The Partitioning of Evapotranspiration into Transpiration, Soil Evaporation, and Canopy Evaporation in a GCM: Impacts on Land–Atmosphere Interaction
نویسندگان
چکیده
Although the global partitioning of evapotranspiration (ET) into transpiration, soil evaporation, and canopy evaporation is not well known, most current land surface schemes and the few available observations indicate that transpiration is the dominant component on the global scale, followed by soil evaporation and canopy evaporation. The Community Land Model version 3 (CLM3), however, does not reflect this global view of ET partitioning, with soil evaporation and canopy evaporation far outweighing transpiration. One consequence of this unrealistic ET partitioning in CLM3 is that photosynthesis, which is linked to transpiration through stomatal conductance, is significantly underestimated on a global basis. A number of modifications to CLM3 vegetation and soil hydrology parameterizations are described that improve ET partitioning and reduce an apparent dry soil bias in CLM3. The modifications reduce canopy interception and evaporation, reduce soil moisture stress on transpiration, increase transpiration through a more realistic canopy integration scheme, reduce within-canopy soil evaporation, eliminate lateral drainage of soil water, increase infiltration of water into the soil, and increase the vertical redistribution of soil water. The partitioning of ET is improved, with notable increases seen in transpiration (13%–41% of global ET) and photosynthesis (65–148 Pg C yr ). Soils are wetter and exhibit a far more distinct soil moisture annual cycle and greater interseasonal soil water storage, which permits plants to sustain transpiration through the dry season. The broader influences of improved ET partitioning on land–atmosphere interaction are diverse. Stronger transpiration and reduced canopy evaporation yield an extended ET response to rain events and a shift in the precipitation distribution toward more frequent smallto medium-size rain events. Soil moisture memory time scales decrease particularly at deeper soil levels. Subsurface soil moisture exerts a slightly greater influence on precipitation. These results indicate that partitioning of ET is an important responsibility for land surface schemes, a responsibility that will gain in relevance as GCMs evolve to incorporate ever more complex treatments of the earth’s carbon and hydrologic cycles.
منابع مشابه
The effect of sub-grid rainfall variability on the water balance and flux exchange processes resolved at climate scale: the European region contrasted to Central Africa and Amazon rainforests
This paper investigates the effect of sub-grid rainfall variability on the simulation of land surface hydrologic processes of three regions (Europe, Africa and Amazon) with contrasting precipitation and vegetation characteristics. The sub-grid rainfall variability is defined in terms of the rainfall coverage fraction at the model’s grid cells, and the statistical distribution of rain rates with...
متن کاملUse of Satellite-Based Precipitation Observation in Improving the Parameterization of Canopy Hydrological Processes in Land Surface Models
Precipitation exhibits significant spatial variability at scales much smaller than the typical size of climate model grid cells. Neglecting such subgrid-scale variability in climate models causes unrealistic representation of land–atmosphere flux exchanges. It is especially problematic over densely vegetated land. This paper addresses this issue by incorporating satellite-based precipitation ob...
متن کاملA simple hydrologically based model of land surface water and energy fluxes for general circulation models
A generalization of the single soil layer variable infiltration capacity (VIC) land surface hydrological model previously implemented in the Geophysical Fluid Dynamics Laboratory general circulation model (GClVO is described. The new model is comprised of a two-layer characterization of the soil column, and uses an aerodynamic representation of the latent and sensible heat fluxes at the land su...
متن کاملCLM 3 . 5 Documentation
The circulation of water through the Earth system is of critical importance to life on Earth. The hydrological cycle is also intimately linked to the energy cycle and to biogeochemical processes including the carbon cycle. Simulating the various processes that interact to form the hydrological cycle is a daunting task for climate models. In particular, over land, interactions between precipitat...
متن کاملAssessing Olive Evapotranspiration Partitioning from Soil Water Balance and Radiometric Soil and Canopy Temperatures
Evapotranspiration (ETc) partitioning and obtaining of FAO56 dual crop coefficient (Kc) for olive was carried out with the SIMDualKc software application for root zone and topsoil soil water balance based on the dual crop coefficients. A simplified two source-energy balance model (STSEB), based on daily remotely sensed soil and canopy thermal infrared data and retrieval of surface fluxes, also ...
متن کامل